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1. INTRODUCTION. In the theory of functions of one complex variable it is

well-known that a function f in the Hardy class H] can be factored in the

form ;

f = gh (1.1)
as the product of two functions g and h in Hz. The following question
generalizing this fact to functions of two complex variables is raised in
Helson and Lowdenslager [2, p. 178]: Let R be a set of Lattice points of the
plane not containing the onigin, which is closed under addition. Can every

summable gunction f with Fouriern sernies of the gonm

-i(m 8 + no)
f . a.. + a_e (1.2)
00 %m,n) c RN
be factoned as 4n {(1.1), with the factons g and h being square summable functions

with the same kind of Fouriern senies as f in (1.2)?

Helson and Lowdenslager [2] gave a complete positive answer for some

reci~ns R, called half-planes, which have the following property:

(myn) ¢ R if and only if (-m,-n) ¢ R, unless m=n=0.

The following interesting regions are typical half-planes:

=3 S={(mn): m<-1,neZ}U{(0,n): n<-1} (1.3)

- T={(mn): meZ, n<-1}U{mO): m< -1}, (1.4)

tg’ but another interesting region, namely the third quadrant ———qu-
- Q= {(myn): m< 0, n<0} - {(0,0)} (1.5)

g¥ is not a half-plane. Thus they pose the question whether this factorization
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holds for the third quadrant.

However, now we know that it is not possible to factor all the summable

functions f with Fourier series of the form

f~apt Y a - g i(me + na) (1.6)

(msn)GQ

into the product of two square summable functions g and h with Fourier series
as in (1.6). (See Rudin [7, page 67].) Thus one has to look for sufficient
conditions that must be imposed on f in order to get such a factorization.
After setting up the necessary notation and terminologies in Section 2,
we give a set of such sufficient conditions in Section 3. In sections 4 and
5 we obtain similar extensions of two further well-known results in the
function theory on the unit disc, a theorem due to Szegdé and a theorem of Riesz,

to function theory on the torus. Again, the difference between our extensions

et

here and the earlier extensions of the same facts by Helson and Lowdenslager [2]
and Bochner [1] is in the set of lattice points which plays the role of negative
integers.

In order to prove our results we use techniques used by Helson and

Lowdenslager in [2] together with some results concerning stationary fields.

B SRRNIIONT |

We finally mention that, just as the well-known strong connection between
the function theory on the unit disc and the prediction theory of stationary

random fields, there is some strong tie between the function theory on

A

the torus and the prediction theory of stationary random fields. For more on

this one can see Helson and Lowdenslager [2,3], Korezlioglu and Loubaton [5],

and Soltani [8].
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2. PRELIMINARIES. Let an be an element of a Hilbert space H for all

integers m and n. an is called a stationary gield on 22 if for all integers
m,n,r,s the inner product of an and er depends onfy on m-r and n-s, i.e.,

if we have

(X = p(m-r, n-s).

mn? er)

In this case p(m,n) = (X n® XOO) is a positive definite function on the group

m
of lattice points Zz. Thus there exists a nonnegative measure u, called the

spectral measure of the field an, defined on the Borel sets of the torus

OieiZTT, 0O<ac<2n

such that

p{(m,n) = J e'i(me * na)du, for all m,n ¢ Z. (2.1)

dadd
Ar?

If p is a.c. with respect to the normatized Lebesgue measure do = its

Radon-Nikodym derivative n is called the spectral density of the field.
Lﬁ denotes the Hilbert space of all functions on the torus which are
square surmable with respect to the measure u. From (2.1) it is clear that

the operator

-i(mg + na)
Xon ™ ©

extends to an {somorphism from
HX = the closed subspace of H spanned by all an'S,

onto Lﬁ. This isomorphism is called the Kofmogrov {somorphism between the

L_A,‘_.._; P P S G S e Sy
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time domain and spectral domain.

For any subset M of Z2 we define HX(M) (respectively Hu(M)) as the closed .

i(me + na)) (

subspace spanned by all an, (respectively e~ m,n) e 22, in the

Hilbert space H (respectively Lﬁ).

H?w, H;n, and HT” stand for HX(M) where M is the set {(r,s): r<m, seZ},
{(r,s): reZ,s<n}and {(r,s): r <ms <n} respectively. Hﬂw, Hj" and
Hrn can be defined similarly. For a spectral density w, by LS, me s H:", and

H™ we will denote the corresponding spaces where u is replaced by wdo.

Finally Pmm, Pwn, and pmn stand for the orthogonal projections onto Hmw,

H;n, and H?" respectively.
2.1. Definition. A staticnarny field an, (m,n) € Z2 {8 sald to have a i

quarter-plane moving average representation {f there 44 a white noise Vinn .
2 N
| < o such that -

o
.
‘]

and constants bmn with Z(m,n)eZZ

Xon = bOOVOO +1 bpq Vm+p,n+q, (2.2)
(p,q)eQ
HQ" = Hgn for akl {m,n) € 22.

We need the following theorem proved by Soltani {8, Theorem 4.3].

2.2. Theorem, |[¢f an be a stationany field with specthal measure u. Then
an has a quatten-plane moving average representation Lf and only 4§ At has a

spectral density W satisfying the gollowing conditions

(i) log w € Ll,
(11) Founien coefhicients of loa w vanishes outside QU (-0) v {(0,0)},

00 _ O~ oo}
(iii) Hw = Hw n Hw . ‘
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We also need the following definition.

2.3 Definition.
(a) We say that the stationary handom gield an has the commutative

property A4

pTe pen _ pilin

(b) A nownnegative measurne u is said to have the commutative property 44
its corrnesponding stationarny gield has the commutative propenty.,

The followina theorem shows the connection of this commutative property

with conditions (i), (ii), and (iii) of Theorem 2.2.

2.4 Theorem. The absolutely continuous nonnegative measure p whose density w
has the property [ log wd o > -= has the commutative propenty £if and only
{f At satisgies conditions (i1) and (iii) of theorem 2.2.

Proof. The proof follows from Theorem 2.2 above and proposition 2.1.6 in

Korezlioglu and Loubaton [5].

|
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3. FACTORIZATION THEOREM. In this section we will prove one of the main

results of this article, namely a factorization theorem concerning factoring
" functions as a product of two H2 functions. (Theorem 3.1).

A summable nonnegative function w on the torus will be called 4actorable
with respect to the half-plane S, defined by (1.3), if there exists a function

1 of the form

3(8,a) = ¢y * %m,n)gs ¢ o-i1(me  + no) (3.1)
such that

w(g,o) = Jo(0,0)]? (3.2)
such a factor ¢ is called cptimal if

|c00|2 = exp (/ log wdo) (3.3)

and the optimal factor is unique up to multiplication by a constant of modul 1,

[3]. Helson and Lowdenslager [2] have proven that a nonnegative summable

function w has such an optimal factor with respect to S if and only if log w ¢ L].

In fact, to construct this factor they take the function H to be the projection

of the function 1 on the subspace Hw(S) and then show [2] that

et = |1 +H[?w,

where X = [ log wdo thus arriving at the factorization

2

e)\/2

T+hl ° lel® (3.4)

w =

e”z

with ¢ = T F - It is then shown that the square summable function ¢ has the

required series representation, namely

.........................................

.......................................

......

oy w e A A S R R e N e Y N N R T R S S T T T V™ (" A I Y ¥ Y TV v T ~ww
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-i(me + na)
¢ = + C e (3.5)

Now we can state and prove our theorem concerning the factorability of H]

functions as the product of two H2 functions.

3.1 Theorem. Let f be a summabfe function on the torus whose Fourien serndies
L5 of the foxm

e-i(me + na)
(m,n)eQ mn s (3.6)

where Q 4s the thind quadrant defined by (1.5). Suppose that

(i) log |f| « L1
(ii) Fourier coefficients of log |f| vanish outside QU (-Q) v {(0,0)},
. O () 00

(111) Hlfl n H|f|= H|f|’

Then thene exists square summabfe functions g and h, with the same Fowrier

serdes as gon fin (3.6), such that
f = gh

Proof: Taking w = |f| then w is a nonnegative function with log w « L! (by (i))
hence by what was proven above, w has the optimal factorization

e)\/2
1+H

2

F] = w = (3.7)

Now workina with the half-plane T of (1.4), instead of the half-plane S of

(1.3), one can similarly factor w with respect to T as

PN W UL WO,




N Ty VN W " vy v Al g o
Rl 0 P Call e P i ptig At Ju A I i et sage v e g L W W R T T g T e ey

s (3.8)

where K is the projection of 1 on Hw(T)' On the other hand, by Theorem 2.2,
the stationary field an corresponding to the density function w has a
quarter-plane moving average representation, namely there exists a white

. : 2 ®
noise v and constants bmn with Zlbmnl < such that

Xmn = 200%00 * Z(p,q)eQ Ppq¥mtp ntq
mn _ ,mn
HX = Hv for all m,n.

Thus we see that HX(S) = Hv(S) and HX(T) = HV(T). Using this fact one can see
that the projection of X00 on HS(S) and HX(T) are both the same and that is
the projection of Xgg ©ON HX(Q). In fact, these projections are simply

b

v
(rareq 7P

Thus their Kolmogrov isomorphs are the same and belongs to Hw(Q). But their

jsomorphs are just H and K.Hence we have
H= KeH(Q). (3.9)

This means that there exists a sequence Pn of polynomials of the form (3.6)

such that

EN

P - H inL
or

. 2
1+ Pn > 1+ Hin Lw

. o . . . . . i i .. .. . .
[NE ORISR UK W P WP, AP WA S Y/l L, WU S Ui, SO T .. s - " RS .
. . P T S T e o e . . L




which implies that

1+P >1+H dinl ,
n W

which means

1

(V+Pw~>(1+Hw inlL,

hence

]

(1 + Pn)f + (1 + H)f in Ldo

This implies that (1 + H)f, and hence
h=eM2(1+H)f

has the required Fourie series given in (3.5). Thus taking the factor a to be

eA/Z
9 7FH (3.10)
we have the factorization
f = gh.

We know that at least h has the required series representation. Now the
function g given by (3.10) has Fourier series of the form (3.5) and similarly

we have

-i(m8 + na)
TFK " boo * 2 ban - © ’
(m,n)eT

Now since H = K, and hence

e)/2 e)\/2

T+H T+ %

the function g has Fourier series of the desired form

B_A _FAEER M L L

b w e el R R . Dl sl el MRt e A W RN L A&

y
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above with those lattice points in the left half-plane whose second coordinate
is 2 instead of 1. This will ensure us that all the corresponding Fourier
coefficients vanish. Thus we can conclude that the coefficients of Mo in

the left half plane are all zero. A similar arqument shows tnat the Fourier
coefficients of Mo must vanish in the lower half plane as well. Thus the
Fourier coefficients of M are zero in a sector with opening of %ﬂ-and hence the

Bochner theorem implies the desired result.

5.5 Remark. Another important problem in the Fourier series on the unite

disc is the well-known theorem of Beuring concerning the invariant subspaces
generated by outer functions. This theorem has again been generalized to the
Fourier series on torus by Helson and Lowdenslager [2]. In their generaliza-
tion, as in the rest of that paper, the role of negative integers in played by
the lattice points in the half-plane. Latter Soltani [8] gave another

generalization, where the role of the negative integers is played by the lattice

points of the third quadrant, as considered in the present article.

-1
g

3
|
]
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But since U was an arbitrary polynomial of the form (5.5), the relation (5.10)

completes the proof. (]

Now we can prove the following Riesz-Bochner type theorem, where the

semigroup of negative integers of Z is now replaced by the semigroup of lattice

points of the third quadrant Q of 22.

5.4 Theorem. Let T be an open secton of the plane containing the third
quadrant Q. 14 the Foundien coefficients of the complex measure u, whose total
variat{on has the commutative property vanishes on T, then u s absclutely

centinueus.

Proof. \e can assume that this sector T is centered at the origin, since
otherwise it will contain such a sector. Now since Q is contained in T, using
Lemma 5.3 for Q = QOO, we conclude that Mg has no nonzero coefficient on @}, and by

Lemma 5.1 even at the origin. On the other hand there exists a lattice point

m0+1 1

with second coordinate 1 in T. Calling this point (m0,1), then Q clearly

ma+1 1
is contained in T. Thus applying Lemma 5.3, this time to 0O 0

m0+1 1

, we conclude

that the Fourier coefficients of Hg on Q is zero. Hence by corollary

5.2 its Fourier coefficient is zero at (m0+1 1) as well. Now one can see that
m.+2 1

0

if m,+2 5_0 the Fourier coefficients of Mg vanishes on Q In fact we

0
have
m42 1 m+1 ]
00 <oV

and we have already shown that the Fourier coefficients of Mo vanishes on
m.+1 1
Q

0
Fourier coefficient of Mg vanishes at (m0+2,1). If we continue with this

vQUu {(m0 +1,1)}
, Q, and at (m0+1,1). Now using corollary 5.2 again we see that the

fashion we see that the coefficients of ug On all lattice points of the form

(m,1) withm < 0 are zero. Now we can start an argument similar to that
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-1 2
(1 + H) belongs to L°,

(V+H) " =b+ N b e ime +ma)

'-""'A_-L'; T, e e

mn
(m,n)eQ
(1 + H)w belongs to L2, (5.9) i
E
where w is the density of v. Now since clearly g
:
|f(6,0)] < w(0,a) a.e. do, i

(5.9) implies that (1 + H)f belongs to L% as well.

Now choose a sequence Nn of trigonometric polynomials of the form (4.4) such

ek b

that
1+N - b (1), in L2
By (5.8), for each n, we have Y
[uaen) ) a, -0 :
Now taking 1limit and letting the 1imit go inside the inteqration sian we ?
get -

[ Ud My © 0. (5.10)
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We know

. .2
Mn + H, in LV,

or

1+M >1+H, in L2
n \V]

Since U(1 + N) is a bounded function we have

UCT + N)(T + M) > UL+ N)(T + H), in Li

This implies

1
v
Now since v is the total variation measure of u, (5.6) implies

u(l + N)(1 + Mn) ~ U(1 + N)(1 +H), in L

UL+ N)(1+ M) > U1+ N)(T + H); i Ll,

which implies

Jur s w0+ ma = vin fua 00 e 6

N-oo

Using our assumption on the coefficients of u we get

1
o

J UCT + N)(1 + H) dy

On the other hand since s|1 + H|? dv,

everywhere with respect to Vg and hence with respect to Mg - Thus (5.7)

reduces to

"
o

J U(T + N(1 + H) du

or

H

[ U(T + N)(1 + H)f do = 0,

where f is the density of u. Now we need the following facts which have

alreadv been shown:

- ‘ - -, - - . - - » .
. e . . . - . . .. - . . .
. S . L T e Tt T .
R A S e e . e e T ey
Lt Cete. N Tt e e s e e e, [ I I

CUPIRIAT 3V B SRS S P IPRE P IPT « L PPTIPTPE. PRPRPRE S G R ST

(5.6)

(5.7)

0 we see that 1 + H vanishes almost

(5.8)

AReul M a4 ““-T
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then its Fowrden coeffdicient at (r,s) vanishes too.

Proof. Let H and Mn be as in the proof of Lemma 5.1, then (5.2) can be written

as

I | ei(re + sa) + Mn ei(re + sa) dvs - 0. (5.4)

which implies

S

[ [eﬂre + sa) +Mne1(re + sa)} du > 0.
But now our assumption implies that

i(re + sa) _
J Mn e dus = 0.

for all n, thus we get

J ei(re + sa) dus =0

which completes the proof.

We also need the following lemma.

5.3. Lemma. Let u be a complex measure on the tonus whose total variation v
has the commutative property. 1§ the Fowrdlen coefficients of u vanish on Qrs,
then the coeffdicient of {ts singularn and absclutely continuous part vanishes

thene separately.
Proof. Let H and Mn be as in the proof of Lemma 5.1. Let N be a trigonometric
polynomial of the form (4.4) and U be a trigonometric polynomial of the form

U = e-‘i(Y‘G"’ sa) 2

(an)‘Q

-i(m8 + na)
a . e (5.5)

P T S . . .
L I RO - L S, - .- - s ST et e
B AT Y PP U, ) LU I, " LA 0y o DI ER . SV IV AT WD LY e . Ty
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the form (4.4) such that

M- H, in L5
Hence .
» H, i 2
Mn in L\)s
which implies
2

1+M >7344 inlL
n \)S
and hence

2 2
J|1+Mn| dvs+J|1+H| dv,
which toaether with (5.1) implies
2
J |1 + Mnl dv, > 0.

Now one can see that this implies

j IETARES) (5.2) .,

and hence

J (1 + Mn) duS + 0.
But by our assumption S MnduS = 0. Hence
[ =0,
and this completes the proof. 0

5.2 Corollary. Let u be a complex measure whode tolal variation measure v has the
commutative propenty. 14 the Fowriern coefficients o4 Mg the singulan part

0§ u vanishes on

Q" = {(m,n): m<r, n<s)t-{(r,s)} (5.3) ‘




b LA Sl B I A b At ¥ B b B - SRS Ao ol gl Ned Adh T emitohe S sl aa i s e By AN ML MPAAS" all” el i A" -~ At Eiraial - Sl Sl A JEndh o i e e B A aen g Sy ]

? ] LA

17

- M e a ~ rmmmmy .- -

5. RIESZ'S TYPE THEOREM. Continuing along the path of the last two sections,

in this section we will give an extension of the following result due to

F. and M. Riesz [6] to the measures on the torus: 14 u is a bounded complex
measwre on the unit cincle whose Fournder coefpdicients vanish fon negative
integens, then py {8 absolutely continuous with nespect to the Lebesgue

measure. Bochner [1] proved the following extension of this result for

!
.
N
3

measures on the torus: Suppose the complex measure u on the torus has vanishing
Fowrien coefficients on a sector of plane with opening angle greater than m,
then u s absolutely continuous with nespect to the Lebesgue measure on the
torus. Here, passing from the measures on the circle to measures on the torus,
Bochner is replacing the set of negative integers by a half-plane, but we are
interested in replacing it by the third quadrant. We will use the prediction
theoretical technique of Helson and Lowdenslager [2] of their new proof of the
same theorem.

We start with the following lemma.

I 5.1 Lemma. Let u be a complex measure whose total variation measure has the

commutative property. 1§ the Fourniern coefficients of Mes the singularn part of

u vanishes on Q, then its coefficient at (0,0) vanishes too.

v rrame

Proof. Let v denote the total variation of u. By theorem 4.2 and its proof

the projection H of 1 on HV(Q) satisfies

q J 11+ H|Z v, = 0. (5.1)

since H is in Hv(Q) there exists a sequence Mn of trigonometric polynomials of
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4.3 Corollary. 14 W is a nonnegative summable function satisfying (i),

(11)s qud (111) of Theorem 3.1, then we have

Inf J |1 + M|? wdo = exp ( J log wdo),
M

where M nanges oven all trigonometrnic polynomials of the gorm (4.4).
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1+M >1+H inlLl
n U

which implies

[em |1+ wea

but this together with the fact that

2 RS A P AL Y B Y Y

[ |1 + H|%du = exp (J log wdo)
)

proven by Heldon and Lowdenslager [2], shows that

[I] + Mnl2 du + exp ( J log wdo) (4.6)

Now (4.5) and (4.6) imply the desired relation (4.3). Thus we just have to
prove the above claim. To do this we first note that u and hence its

corresponding stationary field an has the commutative property, and then we

. . . oo oo _
notice that since Xm n-k € Hy » for a11]k_3 0. we have P &n,n-k = Xm,n-k and
m-1 o _ ph-1 oon _ oM=1n
P Xp n-k = P P X ek = P X noge TOr a1l k > 0. Thus we get
- p-l® 0 -1 -1-1y _
PHX(S)XOO =P " Xgp * (XgolH™ e Hy) =

_p-10 0 -1 -1 -1

Since each term in the right hand side belongs to HX(Q), the term on the left
belongs to HX(O) which means that its isomorph H must belong to Hw(Q). This

completes the proof of the claim and hence the theorem. 0

This together with Theorem 2.4 will get the following corollary.
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When the prediction of stationary fields with respect to a quarter-plane,
say the third quadrant 1is considered, we need an extension of Szégo's
theorem for the third quadrant. In this section we give such an extension,
however we need to assume that our measure u has the commutative property.
These kinds of conditions arise frequently whenever one is trying to extend
a fact concerning the functions of one complex variable to functions of two complex
variables, with the set of nonnegative integers being now replaced by the third

quadrant (cf. Kallianpur and Mandrekar [4], Korezlioglu and Loubaton [5], and !
Soltani [8].)
4.2 Theorem. Let p be a measure having the commutative propeaty. Let u and

w be as in Theorem 4.1. Then
Inf I [T + M|?2 du = exp ( J log wdo) (4.3)
M

where M nanges oven the trigonometric polynomials of the gorm

M= a_ g-1(me + na) (4.4)
(m,n)eQ

Proof. We first note that since the class of polynomials M in (4.4) is smaller

than the class of polynomials P in (4.2),we have

Inf I [1 + M|? du Z_exp(] Tog wdo). (4.5)
M

Then we claim that the function H namely the projection of 1 on Hu(S) belongs

to HW(Q). Hence there exists polynomials Mn of the form (4.4) such that

. 2
Mn > H in Lu

or equivalently
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4. SZEGO'S THEOREM. In this section we will give an extension of the

following theorem of Szego [9] which plays a key role in the prediction theory
. of stationary stochastic processes:
1§ u 48 a finite nonnegative measure defined on the Bonrel
set of the cincle 0 < 6 < 2w, whose absofutely continuous part is

w(eie)de/ZW then we have
exp ( f log w do) = Inf J |1 + P|? dy,
P

whene P nanges over the trigonometric polynomials of the form

i0 21 i6
= + +. ..+
P a]e a2e .o ane .

The solution of the prediction problem for any region R of lattice points
of 22 requires an appropriate generalization of Szégo's theorem for that
region.

Helson and Lowdenslager [2] found the following generalization of Szégo's
theorem for the half-planes R which is important in the prediction of stationary

fields with respect to the half-planes.

4,1 Theorem. Let u be a finite nonnegative measure on the tonus whose

absolutely continuous part As w(e‘e, e’“) deda/4n2. Then

Inf I |1 + P|%dy = Inf j |1 + P|? wdo = exp(I log wdo), (4.1)
p p

wherne P nanges oven the trigonometrnic polynomials of the form

p=y a  e-i(me + no.) . (4.2)
(m,n)eR

mn
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:*: Pn of trigonometric polynomials of the form (3.8) and a sequence of numbers
"
. a, such that
'8
g -] : 2 v
5 an + Pn > g in L|f|
) Hence
o 1,
o ]|an+pn-g 12 |£]do » 0
e which means
- 2
J I(an + Pn)g - 1|%do ~ 0.
Thus 1 belongs to the closed subspace spanned by ge1(me ¥ "a), m>0, n>0.
® Thus Theorem 2.18 of Soltani [8] implies that HQ" = H?w n H;n ,» and hence
(ii1).
)
3..
e
°
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the case of functions of one complex variable every outer function is strongly
outer too.

Now we can prove the following theorem.

3.5 Theorem. [let f be a summabfe function on the torus. Then f has a
factornization
f =gh

such that

(a) g and h are gunctions with

Ifl = lgl%= |h]% 1
{b) h has Founien senies as in (3.6), and i;
(c) g is strongly outen i1

(f and only if f has Founden senies of the form (3.6) and (i), (ii), and (§ii)

» of Theorem 3.1 holds.

Proof. If f is a summable function with Fourier series of the form (3.8)
which satisfies (i), (ii), and (iii), then the proof of Theorem 3.1 shows that
the functions g and h employed there have the properties (a), (b), and (c).

Conversely, suppose that the summable function f can be factored as

f = gh

with g and h satisfying (a), (b), and (c). Then by (a) we have
- log [f| = 2 Tog |g].

From the fact that g, as an outer function, has the properties described for f
in (i) and (ii), the corresponding results (i) and (ii) for f follow immediately.

| Now since g is strongly outer then g'] € H?gl . Thus there exists a sequence
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- -i(mo + na)
g = d00 + 3 dmne .

(m!n)EQ

Finally we note that square summability of the factors follows from the fact
that the factors g and h as given above has the following property

lgl? = |h|® = |f] . (3.11)
This completes the proof of our theorem. 0
As a corollary to Theorem 3.1,with special attention to (3.11), one

arrives at the following:

3.2 Corollary. Any function on the unite sphere of the Hardy space H] o4 the
torus can be factored as the product of two functions on the undit sphere of the
Hardy space. H2 of the ftorus.

To state the next theorem we need to give the following definition.

3.3 Definition. Let hbe a function in LB (1 < p < =) with Fowrien senies

o4 the fowun
-i(mo + na)
h~ 3 * ) qn ©
(m,n)eQ

then (@) the function h {s called outen A4
ng Ih|do = Tog | Ifdol = Tog lagy| >

, L ) -1 . )
(b) we call the function h to be stronalu outern if {its {nverse h — Lies in

0
Hwo with W = [h|? .

3.4 Remark. One can see that strongly outer functions are always outer and in

.. . . . AP . B . . X K . . ..
B P U S S D 2T, U e T o O e o L T S S J S S S S
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